Ιστορική εξέλιξη του φαρμάκου
Φροντίδα ηλικιωμένων
Υποδοχή ασθενών στο Τμήμα Επειγόντων Περιστατικών
Συχνότητα κατακλίσεων σε επαρχιακό νοσοκομείο
Β-θαλασσαιμία και φυσιολογικός καταμήνιος κύκλος
Εντερική θρέψη σε εγκαυματίες και πολυτραυματίες
Νοσηλευτική θεωρία της πολυπλοκότητας
Αξιοποίηση του χρόνου εργασίας

Historical evolution of medicines
Elderly care
Patient’s reception in Emergency Department
The frequency of pressure sores in a provincial hospital
B-thalassaemia and the frequency of the menstrual cycle
Enteral nutrition in burnt and multiple trauma patients
Nursing theory of the complexity
Effective time management in the working place
Περιεχόμενα

Ανασκοπήσεις

- **Ιστορική εξέλιξη του φαρμάκου.** Γ.Α. Φούκα 57
- **Φροντίδα ηλικιωμένων και επαγγελματική εξουθένωση.** Ε. Κοτρώτοιος, Θ. Παραήικας 61

Ερευνητικές εργασίες

- **Υποδοχή ασθενών στο Τμήμα Επειγόντων Περιστατικών της Ευρωκλινικής Αθηνών.** Ν.Β. Φώτος, Π. Επιτροπάκης 65
- **Μέτρηση συχνότητας και βαρύτητας κατακλίσεων σε ασθενείς ελληνικού επαρχιακού γενικού νοσοκομείου.** Ι. Παπαθανασίου, Θ. Παραήικας, Ε. Λαχάνα, Γ. Τζαβέλας, Σ. Κοτρώτοιος, Β. Κουτσοπούλου 72
- **Β-θαλασσαιμία και φυσιολογικός καταμήνιος κύκλος. Μπορούμε να αναμένουμε ένα καλύτερο κύκλο αν τα επίπεδα φερριτίνης διατηρούνται σε ένα χαμηλότερο επίπεδο τιμών;** Μ. Γουρνή, Δ. Σαπουντζή-Κρέπια, Ζ. Ρούπα-Δαριβάκη, Μ. Σκάντζος, Ν. Σκορδής, Χ. Μπαρτσόκας, Ε. Θεοδοσοπούλου 77

Ειδικά άρθρα

- **Επαγωγικό παράδειγμα: Μία νέα αλλαγή παράδειγμα μέσα από την ανάπτυξη της ενοποιημένης νοσηλευτικής θεωρίας της πολυπλοκότητας.** S.L. Van Sell, I. Καλοφιούσογλου 89
- **Μπορούμε να κερδίσουμε χρόνο βελτιώνοντας τις σχέσεις μας στο χώρο εργασίας: Κ. Τριανταφυλλάκης** 93

Οδηγίες για τους συγγραφείς

Reviews

- **Historical evolution of medicines.** G.A. Fouka 57
- **Elderly care and the burnout syndrome.** E. Kotrotsiou, Th. Paralikas 61

Original papers

- **Patients' reception in Emergency Department.** N.V. Fotos, P. Epitropakis 65
- **Measurement of the frequency of pressure sores in patients of a Greek general provincial hospital.** I. Papathanasiou, Th. Paralikas, E. Lahana, G. Tzavelas, S. Kotrotsiou, V. Kutsopoulou 72
- **B-thalassaemia and normal menstrual cycle. Would we expect a better menstrual cycle if ferritin levels can be maintained at a lower level?** M. Gourni, D. Sapountzi-Krepia, Z. Roupa-Darivaki, M. Sgantzos, N. Skordis, C. Bartsokas, H. Theodossopoulou 77

Special articles

- **The role of early enteral nutrition in burnt and multiple trauma patients. Similarities and differences.** Ch. Marvaki, T. Iconomou, P. Iordanou, E. Marvaki, E. Theodossopoulou, E. Pattiraki 83

Metabolistic paradigm. A new paradigm shift through the development of the complexity integration nursing theory. S.L. Van Sell, I. Kalofissudis 89

Can effective time management improve relations in the working place? C. Triadafillakis 93

Instructions to authors

99
The role of early enteral nutrition in burnt and multiple trauma patients

Similarities and differences

Ch. Marvaki,¹ T. Ikonomou,² P. Iordanou,¹ E. Marvaki,³ E. Theodossopoulou,⁴ E. Patiraki⁴

¹Nursing Department of TEI of Athens ²MD, Department of Plastic Surgery, Microsurgery and Burn Center, "G. Gennimatas" General State Hospital, Athens ³MD, Moliere Hospital of Brussels ⁴School of Nursing, University of Athens, Athens, Greece

Key words: Role of early enteral nutrition, nutritional markers (total proteins, blood albumin, globulin, absolute number of lymphocytes, immunoglobulin-IgA, IgM, IgG, iron and TIBC), Total Iron Binding Capacity

Aim The aim of this study was to investigate the role of Early Enteral Nutrition (EEN) in burnt and multiple trauma patients. Material-Method 31 patients with burns >25% of the total body surface area and 35 patients with more than two traumas were included in our study. A nutritional support protocol was followed. Blood markers and the general condition of patients were assessed for the role of EEN. Results In burnt patients, total proteins, serum albumin and serum globulin were increased significantly between all measurements. In multiple trauma patients total proteins and serum globulin were increased significantly between the 1st and 3rd measurement (P<0.001). Serum albumin was slightly decreased between the 1st and 3rd measurement (P=0.350). For burnt patients, between the 1st and 3rd measurement, Fe was increased (P=0.008) and for multiple trauma it was slightly increased. For burnt patients TIBC was increased (P<0.001) and for multiple trauma patients it was slightly decreased. There were no significant changes in the absolute number of lymphocytes neither in immunoglobulin-IgA, IgM, IgG for both patients groups. The mean serum albumin value of the burn patient was significantly increased compared with the multiple trauma patients (P=0.012). The mean serum globulin value of the multiple trauma patients was significantly increased compared with the burn patients (P=0.019). TIBC did not increased between groups in the 1st and 2nd measurements, but it was significantly increased in the 3rd measurement in burn patients compared with the multiple trauma patients (P=0.005). The mean value of immunoglobulin IgG showed a significant increase in multiple trauma patients compared with the burn patients (P=0.006). Conclusions Generally, the results of our study confirm the effectiveness of EEN in both groups of patients as well as the existence of similarities and differences.

Periβήψη Ο ρόλος της εγκαύματος εντερικής θρέψης σε εγκαυματιές και πολυτραυματίες. Ομοιότητες και διαφορές. Περίληψη Το Βήμα του Ασκληπιού 2002, l(2):83-88. Σκοπός Της μελέτης ήταν να εξετάσει το ρόδο της Έγκαιρης Εντερικής Θρέψης (ΕΕΘ) σε εγκαυματιές και πολυτραυματίες. Υλικό-Μέθοδος Στη μελέτη μας συμπεριλήφθησαν 31 εγκαυματιές με εγκαύματα >25% της ολικής επιφάνειας ωμάτων και 35 πολυτραυματίες με περιοσώπητα από δύο τραύματα. Ακολούθησε ειδικό πρωτόκολλο θρέψης και εκτιμήθηκαν εργαστηριακές παράμετροι και η γενική κατάσταση των ασθενών. Αποτελέσματα Στους εγκαυματιές, τα ολικά λευκώματα, οι λευκωματίνες και οι σφαιρίνες αυξήθηκαν σημαντικά μεταξύ όλων των μετρήσεων. Στους πολυτραυματίες τα ολικά λευκώματα και οι σφαιρίνες αυξήθηκαν σημαντικά μεταξύ 1ης και 3ης μέτρησης (Ρ<0,001). Οι λευκωματίνες στους εγκαυματιές αυξήθηκαν σημαντικά (Ρ=0,019). Η μέση τιμή των σφαιρινών στους πολυτραυματίες αυξήθηκε σημαντικά έναντι των εγκαυματιών (Ρ=0,012). Τα ιμμομολωτικά IgA, IgM, IgG ήταν ελαφρά αυξημένα. Στους εγκαυματιές η δεσμευτική ικανότητα σιδήρου (TIBC) αυξήθηκε (Ρ<0,001) και στους πολυτραυματίες έμεινε σταθερή μεταξύ 1ης και 3ης μέτρησης, ο Fe αυξήθηκε (Ρ=0,008). Τα αποτελέσματα αναφέρουν σημαντικές διαφοροποιήσεις στον απόλυτο αριθμό των περιοσώπητων υόρων σε αυτό των ανοσοσφαιρίνων IgA, IgM, IgG και για τις δύο ομάδες ασθενών. Μεταξύ των ομάδων, η μέση τιμή των περιοσώπητων αυξήθηκε σημαντικά (Ρ=0,012). Η μέση τιμή των ανοσοσφαιρίνων τους πολυτραυματίες αυξήθηκε σημαντικά έναντι των εγκαυματιών (Ρ=0,019). Η TIBC των δύο ομάδων δεν αυξήθηκε μεταξύ 1ης και 3ης μέτρησης, αλλά αυξήθηκε σημαντικά στην 3η μέτρηση στους εγκαυματιές σε σχέση με τους πολυτραυματίες (Ρ=0,005). Η μέση τιμή των ανοσοσφαιρίνων IgG παρουσίαζε μία σημαντική αύξη­ ση στους πολυτραυματίες συγκεκριμένα με τους εγκαυματιές (Ρ=0,006). Συμπεράσματα Γενικά, τα αποτελέσματα της μελέτης επιβεβαίωσαν την αποτελεσματικότητα της ΕΕΘ και στις δύο ομάδες των ασθενών καθώς επίσης και παρουσίασαν ομοιότητες και διαφορών μεταξύ των ομάδων.
Severely burnt patients generally show a marked hypermetabolic response and their energy expenditure increases to almost twice the normal one as burn size exceeds 50% of TBSA. Referring to multiple trauma patients, hypermetabolism occurs in most of them within 48 hours after injury. This hypermetabolic response, for both burnt and multiple trauma patients, is accompanied by a progressive decline of host defences, immunological abnormalities and a marked decline in the circulating number of T lymphocytes that impair survival.

Aggressive nutritional support to meet the increased energy expenditure has been considered essential for the management of burnt patients. Enteral nutrition has been considered as an essential part of trauma management to minimize the catabolic loss and enhance the immunological response. It has been shown, for both burnt and multiple trauma patients, to be an effective additional measure in stress, ulcer prophylaxis and prevention of sepsis. The purpose of our study was firstly to evaluate the effectiveness of EEN in burnt and multiple trauma patients, in association with their post burn and post trauma nutritional state, their immunological response and secondly to examine similarities between the two patients’ groups.

Material and method

Our study included 31 patients with burns >25% of the total body surface area, who were admitted in the department of plastic surgery and burn unit of the general state hospital (GSH) of Athens, Greece, “G. Gennimatas” and 35 patients with more than two traumas, who were admitted in the Intensive Care Unit of the GSH of Athens, Greece, “KAT” over the last 3 years.

Inclusion criteria for burnt patients were: (a) the age (>17 years) and (b) the extent of the burn injury. Exclusion criteria included the following: (a) patients in palliative care, (b) previous or planned surgical operation, (c) patients with sepsis, (d) patients presenting allergies to the enteral fluids. Inclusion criteria for multiple trauma patients were: (a) the age (>25 years) and (b) a trauma at least in two different organs or organ systems in different parts of the body, with at least one life-threatening organ injury. Exclusion criteria included the following: (a) patients in palliative care, (b) previous or planned surgical operation, (c) patients with sepsis, (d) presenting allergies to the enteral fluids, (e) patients with burn injury, (f) pre-existing diabetes mellitus or renal or hepatic disease and (g) pregnant women. Data were collected using an assessment chart. The two hospital’s Ethic Committee approved of the study and all the patients selected gave their consent. A nutritional support protocol was followed in all patients included EEN. It started the first six hours of admission for burnt patients and the first two days of admission for multiple trauma patients (three of the patients started the 5th day). This lasted until complete healing of burn injuries and until complete treatment of multiple trauma patients. Solutions of different nutritional value were administered via nasogastric feeding tube according to the energy requirements and gastrointestinal tolerance of the patients. The enteral nutrition formulas used were: (a) Low kcal 0.5 kcal/mL with N 2 g%. (b) Standard value 1 kcal/mL with N 4 g% and (c) high kcal value 1.5 kcal/mL with N 6 g%.

Results

31 burnt patients mean aged 43.7 years-old (SD 12.2) and 35 multiple trauma patients mean aged 40.2 years-old (SD=18.6) were studied. 18 (58.1%) burnt patients were men and 13 (41.9%) women. 25 (71.4%) multiple trauma patients were men and 10 (28.6%) were women. Characteristics of burnt patients are presented in (tabl. 1). The results in burnt patients were as following: all proteins showed a significant increase between the three measurements such as: Total proteins at the 1st measurement (P=0.003), at the 2nd (P = 0.004) and at the 3rd (P<0.001). In multiple trauma patients: total proteins at the 1st measurement (P = 0.024), at the 2nd (P = 0.010) and at the 3rd (P<0.001) (fig. 1). In burnt patients: serum albumin showed a significant increase at the 1st measurement (P = 0.015), the 2nd (P = 0.120) and the 3rd (P<0.005). In multiple trauma patients: serum albumin was slightly decreased at the 1st measurement (P = 0.790), the 2nd mean value was decreased (P = 0.270) and the 3rd mean value was decreased (P = 0.350) (fig. 2). For burnt patients: serum globulin was increased significantly at all measurements, at the first measurement (P=0.05), at the 2nd (P=0.10) and the 3rd (P<0.005). In multiple trauma patients: serum albumin was slightly decreased at the 1st measurement (P=0.790), the 2nd mean value was decreased (P=0.270) and the 3rd mean value was decreased (P=0.350) (fig. 2). For burnt patients: serum globulin was increased significantly at all measurements, at the first measurement (P=0.05), at the 2nd (P=0.007) and at the 3rd (P<0.001). For

Table 1. Characteristics of the 31 burnt patients.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Mean value</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td>73.56</td>
<td>10.43</td>
</tr>
<tr>
<td>Total body surface area burned %</td>
<td>47.40</td>
<td>18.67</td>
</tr>
</tbody>
</table>

Figure 1. Mean value of total proteins (mg/dL).
For multiple trauma patients: Fe level did not change significantly between measurements, but was slightly increased (tabl. 2). TIBC almost remained stable (tabl. 2). There were no significant changes in the absolute number of lymphocytes. The mean value of immunoglobulin IgA and IgM were slightly increased in all measurements. The mean value of immunoglobulin IgG was increased in all measurements; at the 1st measurement was increased significantly (P=0.004), at the 2nd was increased (P=0.108), and at the 3rd was significantly increased (P=0.017). The mean value and SD of the numbers of lymphocytes, IgG, IgA, IgM, Fe and TIBC are presented in (tabl. 2). Complications related to EEN were diarrhea in 11.4% of our patients, hyperglycemia in 17.1% and electrolyte disturbances in 34.3%.

Regarding the results between groups patients. There were no significant differences in mean value of total proteins between groups.

The mean serum albumin value of the burnt patients was significantly increased compared with the multiple trauma patients (P=0.012).

The mean serum globulin value of the multiple trauma patients was significantly increased compared with the burnt patients (P=0.019).

Fe level did not change significantly between groups.

TIBC was not increased between groups at the 1st and the 2nd measurements, but it was significantly increased at 3rd measurement in burnt patients compared with the multiple trauma patients (P=0.005). There were no significant changes in the absolute number of lymphocytes between groups in all measurements.

The mean values of immunoglobulin IgA and IgM were higher in multiple trauma patients but there was no significant difference. The mean value of immunoglobulin IgG showed a significant increase in multiple trauma patients compared with the burnt patients (P=0.06).

Discussion

The concept of the administration of EEN nutrition after injury is relatively new and based upon animal experiments performed more than a decade ago. Based on the animal studies, it seemed reasonable that early enteral nutrition would help to prevent the development of inflammatory and infectious complications in seriously injured patients. One of the problems was that very early enteral nutrition was difficult to applied in a great number of trauma patients. Gianelli et al performed
Table 2. Mean value and SD between measurements in some of the markers of 31 burnt and 35 multiple trauma patients.

<table>
<thead>
<tr>
<th>Markers</th>
<th>Measurements</th>
<th>Mean value Burnt patients</th>
<th>SD</th>
<th>Mean value Multiple trauma patients</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute number of lymphocytes (%)</td>
<td>1st day</td>
<td>1731.3</td>
<td>952</td>
<td>1456.5</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>8th day</td>
<td>1426.8</td>
<td>677.6</td>
<td>1353.1</td>
<td>625.3</td>
</tr>
<tr>
<td></td>
<td>15th day</td>
<td>1526.1</td>
<td>577.3</td>
<td>1420.8</td>
<td>697.5</td>
</tr>
<tr>
<td>IgG (mg/dL)</td>
<td>1st day</td>
<td>922.0</td>
<td>346.6</td>
<td>1270.8</td>
<td>526.62</td>
</tr>
<tr>
<td></td>
<td>8th day</td>
<td>955.7</td>
<td>313.8</td>
<td>1396.8</td>
<td>562.47</td>
</tr>
<tr>
<td></td>
<td>15th day</td>
<td>997.1</td>
<td>308.8</td>
<td>1495.45</td>
<td>488.88</td>
</tr>
<tr>
<td>IgA (mg/dL)</td>
<td>1st day</td>
<td>223.82</td>
<td>125.10</td>
<td>205.81</td>
<td>107.69</td>
</tr>
<tr>
<td></td>
<td>8th day</td>
<td>211.30</td>
<td>83.40</td>
<td>204.05</td>
<td>82.37</td>
</tr>
<tr>
<td></td>
<td>15th day</td>
<td>96.90</td>
<td>64.30</td>
<td>203.00</td>
<td>102.87</td>
</tr>
<tr>
<td>IgM (mg/dL)</td>
<td>1st day</td>
<td>91.90</td>
<td>61.85</td>
<td>166.67</td>
<td>83.87</td>
</tr>
<tr>
<td></td>
<td>8th day</td>
<td>211.30</td>
<td>83.40</td>
<td>204.05</td>
<td>82.37</td>
</tr>
<tr>
<td></td>
<td>15th day</td>
<td>197.80</td>
<td>79.75</td>
<td>222.05</td>
<td>72.93</td>
</tr>
<tr>
<td>Fe (µg/L)</td>
<td>1st day</td>
<td>34.56</td>
<td>19.87</td>
<td>49.67</td>
<td>21.46</td>
</tr>
<tr>
<td></td>
<td>8th day</td>
<td>39.25</td>
<td>27.65</td>
<td>53.00</td>
<td>12.12</td>
</tr>
<tr>
<td></td>
<td>15th day</td>
<td>18.11</td>
<td>19.66</td>
<td>53.33</td>
<td>9.87</td>
</tr>
<tr>
<td>TIBC (µg/L)</td>
<td>1st day</td>
<td>84.80</td>
<td>42.50</td>
<td>48.30</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>8th day</td>
<td>97.80</td>
<td>48.60</td>
<td>48.00</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>15th day</td>
<td>120.60</td>
<td>39.14</td>
<td>48.00</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The first well controlled clinical study that showed early enteral nutrition compared with delayed enteral nutrition had a beneficial effect on seriously burnt patients. Nutritional therapy plays a key role in the overall management of the burnt and multiple trauma patient.22-26 EEN has been demonstrated to minimize the catabolic loss, to enhance the immunologic response,5 ·7 to prevent street ulcer13,17 ·27 and to prolong survival. The presence of food in the gut has been shown to stimulate mucosal proliferation, probably as a result of both humoral and nutritional mechanisms.28,29 Improved mucosal integrity has also been demonstrated in burnt patients who had received EEN. These findings suggest that EEN may help to diminish the incidence and severity of bacteria translocation by improving or preventing breach of the mucosal barrier.

Concerning the immunological status of burnt patients it has been shown that total IgG, IgA, IgM-secreting cells and B-cell number decrease in burn injuries. Both, cellular and humoral immune systems have been reported to be affected in thermal injuries leading to immunosuppression and sepsis.30 Similar results were presented for multiple trauma patients.31 The results of our study showed that the administration of EEN in burnt patients can enhance their immunologic response leading to increased values of immunoglobulins IgG and IgM. Similarly, in multiple trauma patients the administration of EEN can enhance their immunologic response leading to increased values of all immunoglobulins. Although the absolute number of lymphocytes did not increase between measurements, the fact that there was nonmarked decline in the circulating number of lymphocytes indicated that EEN played a significant role in the improvement of the immunological response of the sample.

Studies have suggested that early enteral feeding has been a helpful aid to recovery complications were rare and prolonged enteral feedings were occasionally required in seriously injured patients.32-34 Burns, sepsis, injury or surgery lower serum glutamine levels. It has been suggested that the lowered plasma glutamine concentration contributes, at least in part, to immunosuppression.35
Researchers showed that enteral diet supplements with arginine in burnt rats decreases the mRNA expression of inflammatory cytokines in organs and improves the survival rate. In addition, they showed that administration of enteral glutamine decreased the incidence of infectious complications in multiple trauma patients. Our results in burnt patients showed that total proteins, as well as serum albumin, presented a significant increase between measurements. In multiple trauma patients total proteins showed a significant increase between measurements while serum albumin slightly decreased. This fact, for both burnt and multiple trauma patients, confirmed the positive effect of EEN on the improvement of the nutritional state of the patients.

Serum iron levels present a great number of fluctuations during the day, depending on different factors that affect iron distribution between plasma and storage organs. TIBC values are also affected by iron fluctuations and should be studied together with serum iron levels. Furthermore, low serum iron concentration is related to sepsis in burnt patients. Belmonte et al studied iron metabolism in burnt children and concluded that hyposideraemia is a frequent finding in the acute phase of the burn injury and is accompanied by increased ferritin levels and decreased transferrin concentrations. He suggested that iron therapy should not be recommended in the initial period of stress in burnt patients. However, the results of our study in burnt patients showed that Fe values were slightly increased at 1st and 2nd measurements but the significant increase was at 3rd measurement. Fe value in multiple trauma patients did not change significantly between measurements, but it was slightly increased.

In our study TIBC was significantly increased at the 2nd and at the 3rd measurements in burnt patients while in multiple trauma patients it almost remained stable. These results indicated the effectiveness of EEN on the sample of our study.

We should also refer to the similarities and the differences of the burnt and multiple trauma patients that both represent severe and complicated types of injury the body can sustain. One of the differences is that the enteral nutrition in burnt patients could be administered within the first six hours of admission while in multiple trauma patients within the first two days of admission. This was due to the fact that it takes more time to define the needs and the tolerance of multiple trauma patients. However there were no significant differences in mean value of total proteins between groups. It means that enteral nutrition has various potential similar advantages for both patients' groups, burns and multiple trauma, including a reduction in infectious events and improvement of the survival rate as it is already mentioned. In addition, it should be stressed that none of the sample presented sepsis. Fe level did not change significantly between groups, there were no significant changes in the absolute number of lymphocytes between groups in all measurements and the mean value of immunoglobulins was IgA and IgM higher in multiple trauma patients but there was no significant difference. The above results can be explained as an evidence of similarities existing in both patients' groups related to the effectiveness of EEN.

However, although the sample consisted of severely ill patients and despite the similarities, differences were expected due to patients' illness and to the complexity of the nutritional and to the complexity of the nutritional support. Nutritional support is a complex process involving precise evaluation of the patient's energy requirements, patient's tolerance and the type of underlying disease. Thus, the results showed the following differences: The mean serum albumin value of the burnt patients was significantly increased compared with the multiple trauma patients and the mean serum globulin value of the multiple trauma patients was significantly increased compared with the burnt patients. Furthermore the TIBC increased significantly at the 3rd measurement in burnt patients compared with the multiple trauma patients. The mean value of immunoglobulin IgG showed a significant increase in multiple trauma patients compared with the burnt patients.

Conclusion

Generally, the results of our study confirmed the effectiveness of EEN on both groups of patients as well as the existence of similarities and differences. EEN nutrition provided optimal preservation of the nutritional state of both groups burnt and multiple trauma patients. It is suggested that in severely ill patients nutritional support should be considered as integral part of basic care.

References

4. Alexander JW, Ogle CK, Stinnett JD et al. A sequential, prospective analysis of immunologic abnormalities and infec-